SELF-DUALITY AND RING EXTENSIONS

Takashi MANO

Department of Mathematics, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102, Japan

Communicated by H. Bass Received 10 February 1983

Introduction

The purpose of this paper is to study the relation between ring extensions and selfduality. The theory of duality is established by K. Morita [2]. However, the problem concerning the existence of self-duality for a given ring is difficult and there seems to be only a few papers dealing with this problem. Indeed, the Artinian rings with self-duality have not yet been characterized. Recently K.R. Fuller and J.K. Haack [1] have proved that a finite 'zR semigroup ring' over a ring with self-duality has itself a self-duality.

In this paper, we shall generalize their result by establishing the following theorem.

Theorem. Let $A \supseteq B$ be a ring extension. If A has a finite free basis over B each member of which centralizes all the elements of B, B has a self-duality induced by $_{B}V_{B}$, and if the structure constants of A with respect to the above basis commute with each element of V, then A has a self-duality induced by $_{A}Hom_{B}(_{B}A_{A}, _{B}V)$.

It should be noted that any finite-dimensional algebra over a commutative field satisfies our condition, while it is not always a finite zR semigroup ring in general.

1.

Throughout this paper, $A \supseteq B$ is a ring extension satisfying the following conditions;

(1) A is a free left B-module of rank n.

(2) A has a free basis $x_1, \ldots, x_n \in A$ such that each x_i centralizes the elements of B, i.e.,

$$bx_i = x_i b$$
 for all $b \in B$.

Under these assumptions, it is easy to check that A is a free right B-module of rank n. Z(B) denotes the center of B, and put

$$x_i x_j = \sum_{p=1}^n \beta_{ij}^p x_p, \quad \beta_{ij}^p \in B,$$
$$\mathbf{1}_A = \sum_{i=1}^n \alpha_i x_i, \qquad \alpha_i \in B.$$

Lemma 1.

- (i)
- $\begin{aligned} \beta_{ij}^{p}, \alpha_{i} \in Z(B) & \text{for all } i, j \text{ and } p. \\ \sum_{p} \beta_{ij}^{p} \beta_{pk}^{m} &= \sum_{p} \beta_{jk}^{p} \beta_{ip}^{m} & \text{for all } i, j, k \text{ and } m. \end{aligned}$ (ii)

(iii)
$$\sum_{p} \alpha_{p} \beta_{pj}^{i} = \delta_{ij} = \sum_{p} \alpha_{p} \beta_{jp}^{i}$$
 for all *i* and *j*.

Proof. (i) Since

$$\sum_{p} \beta_{ij}^{p} bx_{p} = \left(\sum_{p} \beta_{ij}^{p} x_{p}\right) b = (x_{i} x_{j}) b = b(x_{i} x_{j})$$
$$= b\left(\sum_{p} \beta_{ij}^{p} x_{p}\right) = \sum_{p} b\beta_{ij}^{p} x_{p} \quad \text{for all } b \in B,$$

and $\{x_1, \ldots, x_n\}$ is a free basis over B,

$$\beta_{ij}^{p}b = b\beta_{ij}^{p}$$
 for all $b \in B$ and i, j and p .

Next, since

$$\sum_{i} \alpha_{i} b x_{i} = \left(\sum_{i} \alpha_{i} x_{i}\right) b = 1 \cdot b = b \cdot 1$$
$$= b \left(\sum_{i} \alpha_{i} x_{i}\right) = \sum_{i} b \alpha_{i} x_{i} \quad \text{for all } b \in B,$$

we have

$$\alpha_i b = b\alpha_i$$
 for all $b \in B$ and *i*.

(ii) This formula is well known.

(iii) Since

$$\sum_{i} \left(\sum_{p} \alpha_{p} \beta_{pj}^{i} \right) x_{i} = \sum_{p} \alpha_{p} \left(\sum_{i} \beta_{pj}^{i} x_{i} \right) = \sum_{p} \alpha_{p} x_{p} x_{j}$$
$$= \left(\sum_{p} \alpha_{p} x_{p} \right) x_{j} = x_{j} = \sum_{i} \delta_{ij} x_{i} \quad \text{for all } j,$$

we have

$$\sum_{p} \alpha_{p} \beta_{pj}^{i} = \delta_{ij} \quad \text{for all } i \text{ and } j. \qquad \Box$$

From now on, assume that B has a self-duality induced by $_BV_B$. Then $_BV$ and V_B are the linearly compact injective cogenerators and

$$\operatorname{End}_{(B}V)\cong B, \qquad \operatorname{End}(V_B)\cong B.$$
 (3)

Put

$$_{B}W_{B} = \bigoplus_{a}^{n} V_{B}.$$

We will think of each element of W as a row vector and denote $[v_s]$. For each $\sum_i b_i x_i \in A$ and $[v_s] \in W$, we define

$$\left(\sum_{i} b_{i} x_{i}\right) * [v_{s}] = \left[\sum_{p} \sum_{i} b_{i} \beta_{si}^{p} v_{p}\right].$$
(4)

Lemma 2. With the multiplication '*', W is a left A- right B-bimodule. Moreover, left B-module structure of $\bigoplus_{B} V$ coincides with the multiplication '*', i.e.,

$$\left(\sum_{i} b\alpha_{i}x_{i}\right) * [v_{s}] = [bv_{s}] \text{ for all } b \in B \text{ and } [v_{s}] \in W.$$

Proof. We shall only prove

$$a * (a' * [v_s]) = (aa') * [v_s]$$
(5)

for all $a, a' \in A$ and $[v_s] \in W$. Put $a = \sum_j b_j x_j$ and $a' = \sum_k b'_k x_k$. Then

$$a * (a' * [v_s]) = \left(\sum_j b_j x_j\right) * \left(\left(\sum_k b'_k x_k\right) * [v_s]\right)$$
$$= \left(\sum_j b_j x_j\right) * \left[\sum_q \sum_k b'_k \beta^q_{sk} v_q\right] = \left[\sum_p \sum_j \sum_q \sum_k b_j \beta^p_{sj} b'_k \beta^q_{pk} v_q\right].$$

On the other hand,

$$(aa') * [v_s] = \left(\left(\sum_j b_j x_j \right) \left(\sum_k b'_k x_k \right) \right) * [v_s]$$
$$= \left(\sum_p \sum_k \sum_j b_j b'_k \beta^p_{jk} x_p \right) * [v_s] = \left[\sum_q \sum_p \sum_k \sum_j b_j b'_k \beta^p_{jk} \beta^q_{sp} v_q \right].$$

Then (5) follows from Lemma 1 (i) and (ii). \Box

Hereafter, we will denote the multiplication omitting '*'.

Lemma 3.

$$\Phi: {}_{A}\operatorname{Hom}_{B}({}_{B}A_{A}, {}_{B}V_{B}) \ni \varphi \mapsto [(x_{s})\varphi] \in {}_{A}W_{B}$$

is a bimodule isomorphism.

Proof. Since ${}_{B}A_{B} \cong \bigoplus^{n} {}_{B}B_{B}$, it is easy to show that Φ is a *B*-bimodule isomorphism. Let $\sum_{k} b_{k}x_{k} \in A$ and $\varphi \in \operatorname{Hom}_{B}({}_{B}A, {}_{B}V)$. Then

$$\left(\sum_{k} b_{k} x_{k}\right) [(x_{s})\varphi] = \left[\sum_{p} \sum_{k} b_{k} \beta_{sk}^{p} (x_{p})\varphi\right]$$
$$= \left[\left(\sum_{p} \sum_{k} b_{k} \beta_{sk}^{p} x_{p}\right)\varphi\right] = \left[\left(\sum_{k} b_{k} \sum_{p} \beta_{sk}^{p} x_{p}\right)\varphi\right]$$
$$= \left[\left(\sum_{k} b_{k} x_{s} x_{k}\right)\varphi\right] = \left[(x_{s})\left(\sum_{k} b_{k} x_{k} \varphi\right)\right].$$

Hence

$$\left(\sum_{k} b_{k} x_{k}\right) \boldsymbol{\Phi}(\boldsymbol{\varphi}) = \boldsymbol{\Phi}\left(\sum_{k} b_{k} x_{k} \boldsymbol{\varphi}\right).$$

Thus we have proved that Φ is a A-homomorphism. \Box

Corollary 4. $_AW$ is a linearly compact injective cogenerator and defines a duality between A and End($_AW$).

Proof. This corollary is directly from Lemma 3 and P. Vámos [3, Theorem 2.2]. \Box

Let $b \in Z(B)$. Since the map ${}_{B}V \ni v \mapsto bv \in {}_{B}V$ is a *B*-endomorphism of ${}_{B}V$, there uniquely exists $\pi(b) \in B$ such that

 $b'bv = b'v\pi(b)$ for all $v \in V$ and $b' \in B$.

(Notice (3).) Thus we have

$$bv = v\pi(b)$$
 for all $v \in V$.

Moreover,

$$v(\pi(b)b') = (v\pi(b))b' = (bv)b' = b(vb')$$

$$=(vb')\pi(b)=v(b'\pi(b))$$
 for all $v \in V$ and $b' \in B$.

Since V_B is faithful, we have

$$\pi(b)b' = b'\pi(b)$$
 for all $b' \in B$.

Therefore we have proved that $\pi(b) \in Z(B)$. Then

Lemma 5. $\pi: Z(B) \rightarrow Z(B)$ is a ring automorphism.

2.

We now proceed to compute $\operatorname{End}(_AW)$. Since

$$\operatorname{End}(_{B}W) = \operatorname{End}\left(\bigoplus_{B}^{n}V\right) = M_{n}(\operatorname{End}(_{B}V)) = M_{n}(B),$$

we have

¢."

$$B \subseteq \operatorname{End}_{A}W) \subseteq \operatorname{End}_{B}W) = M_{n}(B).$$

We will denote each element in $M_n(B)$ of the form (b_{pq}) .

Lemma 6.

$$\sigma: A \ni \sum_{i} b_{i} x_{i} \mapsto \left(\sum_{i} b_{i} \beta_{iq}^{p}\right) \in M_{n}(B)$$

is a one-to-one ring homomorphism.

Proof. It is easy to show that σ is an additive homomorphism. First, we shall prove that σ is one-to-one.

$$\sum_{i} b_{i}x_{i} \in \operatorname{Ker} \sigma \implies \sum_{i} b_{i}\beta_{iq}^{p} = 0 \quad \text{for all } p \text{ and } q,$$

$$\implies \sum_{p} \sum_{i} b_{i}\beta_{iq}^{p}x_{p} = 0 \quad \text{for all } q,$$

$$\implies \sum_{i} b_{i}x_{i}x_{q} = 0 \quad \text{for all } q,$$

$$\implies \sum_{q} \sum_{i} b_{i}x_{i}x_{q}\alpha_{q} = 0,$$

$$\implies \sum_{i} b_{i}x_{i} = 0.$$

Hence σ is one-to-one. Next we shall prove that σ is a ring homomorphism. Let $\sum_i b_i x_i, \sum_j b'_j x_j \in A$. Then

$$\sigma\left(\sum_{i} b_{i} x_{i}\right) \sigma\left(\sum_{j} b_{j}' x_{j}\right) = \left(\sum_{i} b_{i} \beta_{iq}^{p}\right) \left(\sum_{j} b_{j}' \beta_{jq}^{p}\right)$$
$$= \left(\sum_{i} \sum_{j} b_{i} b_{j}' \sum_{i} \beta_{it}^{p} \beta_{jq}^{t}\right).$$

On the other hand,

$$\sigma\left(\left(\sum_{i} b_{i} x_{i}\right)\left(\sum_{j} b_{j} x_{j}\right)\right) = \sigma\left(\sum_{i} \sum_{j} b_{i} b_{j}' \sum_{i} \beta_{ij}' x_{i}\right)$$
$$= \left(\sum_{i} \sum_{j} b_{i} b_{j}' \sum_{i} \beta_{ij}' \beta_{iq}^{p}\right)$$

Thus

$$\sigma\left(\sum_{i} b_{i} x_{i}\right) \sigma\left(\sum_{j} b_{j}' x_{j}\right) = \sigma\left(\left(\sum_{i} b_{i} x_{i}\right) \left(\sum_{j} b_{j}' x_{j}\right)\right)$$

by Lemma 1 (ii).

Corollary 7.

is a commutative diagram. \Box

Now we shall make the following assumption:

(C) $\pi(\beta_{ij}^k) = \beta_{ij}^k$ for all *i*, *j* and *k*.

(C) is equivalent to

$$\beta_{ij}^k v = v \beta_{ij}^k$$
 for all $v \in V$ and i, j and k .

Lemma 8. Under the assumption (C), the followings are concluded. (i) Let $(b_{pq}) \in M_n(B)$. Then $(b_{pq}) \in \text{End}(_AW)$ if and only if

(ii)
$$\sum_{q} \beta_{si}^{q} b_{tq} = \sum_{q} \beta_{qi}^{t} b_{qs} \quad \text{for all } i, t \text{ and } s.$$
$$\operatorname{End}_{A} W = \sum_{k=1}^{n} B(\beta_{kq}^{p}) = \sigma(A).$$

Proof. (i) Let $[v_s] \in W$. Then

$$x_{i}([v_{s}](b_{pq})) = x_{i} \left[\sum_{t} v_{t} b_{ts}\right] = \left[\sum_{t} \sum_{q} \beta_{si}^{q} v_{t} b_{tq}\right]$$
$$= \left[\sum_{t} \sum_{q} v_{t} \beta_{si}^{q} b_{tq}\right] \text{ for all } i.$$

On the other hand,

$$(x_i[v_s])(b_{pq}) = \left[\sum_t \beta_{si}^t v_t\right](b_{pq}) = \left[\sum_t \sum_q \beta_{qi}^t v_t b_{qs}\right]$$
$$= \left[\sum_t \sum_q v_t \beta_{qi}^t b_{qs}\right] \text{ for all } i.$$

Thus we have

$$(b_{pq}) \in \operatorname{End}(_{A}W) \Leftrightarrow \sum_{t} \sum_{q} v_{t}\beta_{si}^{q} b_{tq} = \sum_{t} \sum_{q} v_{t}\beta_{qi}^{t} b_{qs}$$
for all $[v_{s}] \in W$ and *i*, *s*. (6)

Suppose $(b_{pq}) \in \text{End}(_AW)$. Let $v \in V$ and fix t. Put $[v_s] = [\delta_{ps}v]$. Then by (6),

$$v \sum_{q} \beta_{si}^{q} b_{tq} = v \sum_{q} \beta_{qi}^{t} b_{qs}$$
 for all $v \in V$.

Therefore

$$\sum_{q} \beta_{s^{i}}^{q} b_{tq} = \sum_{q} \beta_{qi}^{t} b_{qs}.$$

Conversely, if $\sum_{q} \beta_{si}^{q} b_{tq} = \sum_{q} \beta_{qi}^{t} b_{qs}$ for all *i* and *t*, then it is easy to see that $(b_{pq}) \in \text{End}(_{A}W)$ from (6).

(ii) Let $(b_{pq}) \in \text{End}(_AW)$. Then, by (i),

$$b_{pi} = \sum_{q} \delta_{qi} b_{pq} = \sum_{q} \sum_{s} \alpha_{s} \beta_{si}^{q} b_{pq} = \sum_{s} \alpha_{s} \sum_{q} \beta_{si}^{q} b_{pq}$$
$$= \sum_{s} \alpha_{s} \sum_{q} \beta_{qi}^{p} b_{qs} = \sum_{q} \left(\sum_{s} \alpha_{s} b_{qs} \right) \beta_{qi}^{p} \quad \text{for all } p \text{ and } i$$

Put $c_q = \sum_s \alpha_s b_{qs}$. Then we have

$$b_{pq} = \sum_{k} c_k \beta_{kq}^p$$
 for all p and q .

Thus

$$(b_{pq}) = \sum_{k} c_k(\beta_{kq}^p) \in \sum_{k} B(\beta_{kq}^p).$$

On the other hand, it is easy to check that $\sum_{k} B(\beta_{kq}^{p}) \subseteq \operatorname{End}_{A}W$. Thus we have proved (ii). \Box

Now we get the following theorem.

Theorem 9. Under the assumption (C), i has a self-duality induced by W.

Proof. By Corollary 4, A has a duality induced by $_AW$, and $\operatorname{End}(_AW) = \sigma(A) \cong A$ from Lemma 8. Thus $_AW$ induces a self-duality of A. \Box

References

- [1] K.R. Fuller and J.K. Haack, Duality for semigroup rings, J. Pure Appl. Algebra 22 (1981) 113-119.
- [2] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku (Sect. A) 6 (1958) 83-142.
- [3] P. Vámos, Rings with duality, Proc. London Math. Soc. (3) 35 (1977) 275-289.