SELF-DUALITY AND RING EXTENSIONS

Takashi MANO
Department of Mathematics, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102, Japan

Communicated by H. Bass
Received 10 February 1983

Introduction

The purpose of this paper is to study the relation between ring extensions and selfduality. The theory of duality is established by K. Morita [2]. However, the problem concerning the existence of self-duality for a given ring is difficuit and there seems to be only a few papers dealing with this problem. Indeed, the Artinian rings with self-duality have not yet been characterized. Recently K.R. Fuller and J.K. Haack [1] have proved that a finite ' $z R$ semigroup ring' over a ring with self-duality has itself a self-duality.

In this paper, we shall generalize their result by establishing the following theorem.

Theorem. Let $A \supseteq B$ be a ring extension. If A has a finite free basis over B each member of which centralizes all the elements of B, B has a self-duality induced by ${ }_{B} V_{B}$, and if the structure constants of A with respect to the above basis commute with each element of V, then A has a self-duality induced by ${ }_{A} \operatorname{Hom}_{B}\left({ }_{B} A_{A},{ }_{B} V\right)$.

It should be noted that any finite-dimensional algebra over a commutative field satisfies our condition, while it is not always a finite $z R$ semigroup ring in general.
1.

Throughout this paper, $A \supseteq B$ is a ring extension satisfying the following conditions;
(1) A is a free left B-module of rank n.
(2) A has a free basis $x_{1}, \ldots, x_{n} \in A$ such that each x_{i} centralizes the elements of B, i.e.,

$$
b x_{i}=x_{i} b \text { for all } b \in B .
$$

Under these assumptions, it is easy to check that A is a free right B-module of rank n. $Z(B)$ denotes the center of B, and put

$$
\begin{array}{ll}
x_{i} x_{j}=\sum_{p=1}^{n} \beta_{i j}^{p} x_{p}, & \beta_{i j}^{p} \in B \\
1_{A}=\sum_{i=1}^{n} \alpha_{i} x_{i}, & \alpha_{i} \in B
\end{array}
$$

Lemma 1.

(i) $\quad \beta_{i j}^{p}, \alpha_{i} \in Z(B) \quad$ for all i, j and p.
(ii) $\quad \sum_{p} \beta_{i j}^{p} \beta_{p k}^{m}=\sum_{p} \beta_{j k}^{p} \beta_{i p}^{m} \quad$ for all i, j, k and m.
(iii) $\quad \sum_{p} \alpha_{p} \beta_{p j}^{i}=\delta_{i j}=\sum_{p} \alpha_{p} \beta_{j p}^{i} \quad$ for all i and j.

Proof. (i) Since

$$
\begin{aligned}
\sum_{p} \beta_{i j}^{p} b x_{p} & =\left(\sum_{p} \beta_{i j}^{p} x_{p}\right) b=\left(x_{i} x_{j}\right) b=b\left(x_{i} x_{j}\right) \\
& =b\left(\sum_{p} \beta_{i j}^{p} x_{p}\right)=\sum_{p} b \beta_{i j}^{p} x_{p} \quad \text { for all } b \in B
\end{aligned}
$$

and $\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis over B,

$$
\beta_{i j}^{p} b=b \beta_{i j}^{p} \text { for all } b \in B \text { and } i, j \text { and } p
$$

Next, since

$$
\begin{aligned}
\sum_{i} \alpha_{i} b x_{i} & =\left(\sum_{i} \alpha_{i} x_{i}\right) b=1 \cdot b=b \cdot 1 \\
& =b\left(\sum_{i} \alpha_{i} x_{i}\right)=\sum_{i} b \alpha_{i} x_{i} \quad \text { for all } b \in B
\end{aligned}
$$

we have

$$
\alpha_{i} b=\dot{b} \alpha_{i} \quad \text { for all } b \in B \text { and } i
$$

(ii) This formula is well known.
(iii) Since

$$
\begin{aligned}
\sum_{i}\left(\sum_{p} \alpha_{p} \beta_{p j}^{i}\right) x_{i} & =\sum_{p} \alpha_{p}\left(\sum_{i} \beta_{p j}^{i} x_{i}\right)=\sum_{p} \alpha_{p} x_{p} x_{j} \\
& =\left(\sum_{p} \alpha_{p} x_{p}\right) x_{j}=x_{j}=\sum_{i} \delta_{i j} x_{i} \text { for all } j
\end{aligned}
$$

we have

$$
\sum_{p} \alpha_{p} \beta_{p j}^{i}=\delta_{i j} \quad \text { for all } i \text { and } j
$$

From now on, assume that B has a self-duality induced by ${ }_{B} V_{B}$. Then ${ }_{B} V$ and V_{B} are the linearly compact injective cogenerators and

$$
\begin{equation*}
\operatorname{End}\left({ }_{B} V\right) \cong B, \quad \operatorname{End}\left(V_{B}\right) \cong B . \tag{3}
\end{equation*}
$$

Put

$$
{ }_{B} W_{B}=\stackrel{n}{\oplus}_{B} V_{B} .
$$

We will think of each element of W as a row vector and denote [v_{s}]. For each $\sum_{i} b_{i} x_{i} \in A$ and $\left[v_{s}\right] \in W$, we define

$$
\begin{equation*}
\left(\sum_{i} b_{i} x_{i}\right) *\left[v_{s}\right]=\left[\sum_{p} \sum_{i} b_{i} \beta_{s i}^{p} v_{p}\right] . \tag{4}
\end{equation*}
$$

Lemma 2. With the multiplication '*', W is a left A - right B-bimodule. Moreover, left B-module structure of $\oplus_{B} V$ coincides with the multiplication ' $*$ ', i.e.,

$$
\left(\sum_{i} b \alpha_{i} x_{i}\right) *\left[v_{s}\right]=\left[b v_{s}\right] \quad \text { for all } b \in B \text { and }\left[v_{s}\right] \in W .
$$

Proof. We shall only prove

$$
\begin{equation*}
a *\left(a^{\prime} *\left[v_{s}\right]\right)=\left(a a^{\prime}\right) *\left[v_{s}\right] \tag{5}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $\left[v_{s}\right] \in W$. Put $a=\sum_{j} b_{j} x_{j}$ and $a^{\prime}=\sum_{k} b_{k}^{\prime} x_{k}$. Then

$$
\begin{aligned}
a *\left(a^{\prime} *\left[v_{s}\right]\right) & =\left(\sum_{j} b_{j} x_{j}\right) *\left(\left(\sum_{k} b_{k}^{\prime} x_{k}\right) *\left[v_{s}\right]\right) \\
& =\left(\sum_{j} b_{j} x_{j}\right) *\left[\sum_{q} \sum_{k} b_{k}^{\prime} \beta_{s k}^{q} v_{q}\right]=\left[\sum_{p} \sum_{j} \sum_{q} \sum_{k} b_{j} \beta_{s j}^{p} b_{k}^{\prime} \beta_{p k}^{q} v_{q}\right] .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(a a^{\prime}\right) *\left[v_{s}\right] & =\left(\left(\sum_{j} b_{j} x_{j}\right)\left(\sum_{k} b_{k}^{\prime} x_{k}\right)\right) *\left[v_{s}\right] \\
& =\left(\sum_{p} \sum_{k} \sum_{j} b_{j} b_{k}^{\prime} \beta_{j k}^{p} x_{p}\right) *\left[v_{s}\right]=\left[\sum_{q} \sum_{p} \sum_{k} \sum_{j} b_{j} b_{k}^{\prime} \beta_{j k}^{p} \beta_{s p}^{q} v_{q}\right] .
\end{aligned}
$$

Then (5) follows from Lemma 1 (i) and (ii).
Hereafter, we will denote the multiplication omitting ' $*$ '.

Lemma 3.

$$
\Phi:{ }_{A} \operatorname{Hom}_{B}\left({ }_{B} A_{A},{ }_{B} V_{B}\right) \ni \varphi \mapsto\left[\left(x_{S}\right) \varphi\right] \in_{A} W_{B}
$$

is a bimodule isomorphism.

Proof. Since ${ }_{B} A_{B} \cong \oplus^{n}{ }_{B} B_{B}$, it is easy to show that Φ is a B-bimodule isomorphism. Let $\sum_{k} b_{k} x_{k} \in A$ and $\varphi \in \operatorname{Hom}_{B}\left({ }_{B} A,{ }_{B} V\right)$. Then

$$
\begin{aligned}
\left(\sum_{k} b_{k} x_{k}\right)\left[\left(x_{s}\right) \varphi\right] & =\left[\sum_{p} \sum_{k} b_{k} \beta_{s k}^{p}\left(x_{p}\right) \varphi\right] \\
& =\left[\left(\sum_{p} \sum_{k} b_{k} \beta_{s k}^{p} x_{p}\right) \varphi\right]=\left[\left(\sum_{k} b_{k} \sum_{p} \beta_{s k}^{p} x_{p}\right) \varphi\right] \\
& =\left[\left(\sum_{k} b_{k} x_{s} x_{k}\right) \varphi\right]=\left[\left(x_{s}\right)\left(\sum_{k} b_{k} x_{k} \varphi\right)\right] .
\end{aligned}
$$

Hence

$$
\left(\sum_{k} b_{k} x_{k}\right) \Phi(\varphi)=\Phi\left(\sum_{k} b_{k} x_{k} \varphi\right) .
$$

Thus we have proved that Φ is a A-homomorphism.
Corollary 4. ${ }_{A} W$ is a linearly compact injective cogenerator and defines a duality between A and $\operatorname{End}\left({ }_{A} W\right)$.

Proof. This corollary is directly from Lemma 3 and P. Vámos [3, Theorem 2.2].

Let $b \in Z(B)$. Since the $\operatorname{map}_{B} V \ni v \mapsto b v \in_{B} V$ is a B-endomorphism of ${ }_{B} V$, there uniquely exists $\pi(b) \in B$ such that

$$
b^{\prime} b v=b^{\prime} v \pi(b) \quad \text { for all } v \in V \text { and } b^{\prime} \in B
$$

(Notice (3).) Thus we have

$$
b v=v \pi(b) \quad \text { for all } v \in V
$$

Moreover,

$$
\begin{aligned}
v\left(\pi(b) b^{\prime}\right) & =(v \pi(b)) b^{\prime}=(b v) b^{\prime}=b\left(v b^{\prime}\right) \\
& =\left(v b^{\prime}\right) \pi(b)=v\left(b^{\prime} \pi(b)\right) \quad \text { for all } v \in V \text { and } b^{\prime} \in B .
\end{aligned}
$$

Since V_{B} is faithful, we have

$$
\pi(b) b^{\prime}=b^{\prime} \pi(b) \quad \text { for all } b^{\prime} \in B
$$

Therefore we have proved that $\pi(b) \in Z(B)$. Then
Lemma 5. $\pi: Z(B) \rightarrow Z(B)$ is a ring automorphism.
2.

We now proceed to compute $\operatorname{End}\left({ }_{A} W\right)$. Since

$$
\operatorname{End}\left({ }_{B} W\right)=\operatorname{End}\left(\oplus_{\oplus}^{\oplus_{B}} V\right)=M_{n}\left(\operatorname{End}\left({ }_{B} V\right)\right)=M_{n}(B)
$$

we have

$$
B \subseteq \operatorname{End}\left({ }_{A} W\right) \subseteq \operatorname{End}\left({ }_{B} W\right)=M_{n}(B)
$$

We will denote each element in $M_{n}(B)$ of the form $\left(b_{p q}\right)$.

Lemma 6.

$$
\sigma: A \ni \sum_{i} b_{i} x_{i} \mapsto\left(\sum_{i} b_{i} \beta_{i q}^{p}\right) \in M_{n}(B)
$$

is a one-to-one ring homomorphism.

Proof. It is easy to show that σ is an additive homomorphism. First, we shall prove that σ is one-to-one.

$$
\begin{array}{rlrl}
\sum_{i} b_{i} x_{i} \in \operatorname{Ker} \sigma & \Rightarrow \sum_{i} b_{i} \beta_{i q}^{p}=0 & & \text { for all } p \text { and } q \\
& \Rightarrow \sum_{p} \sum_{i} b_{i} \beta_{i q}^{p} x_{p}=0 & & \text { for all } q \\
& \Rightarrow \sum_{i} b_{i} x_{i} x_{q}=0 & & \text { for all } q \\
& \Rightarrow \sum_{q} \sum_{i} b_{i} x_{i} x_{q} \alpha_{q}=0 & & \\
& \Rightarrow \sum_{i} b_{i} x_{i}=0 &
\end{array}
$$

Hence σ is one-to-one. Next we shall prove that σ is a ring homomorphism. Let $\sum_{i} b_{i} x_{i}, \sum_{j} b_{j}^{\prime} x_{j} \in A$. Then

$$
\begin{aligned}
\sigma\left(\sum_{i} b_{i} x_{i}\right) \sigma\left(\sum_{j} b_{j}^{\prime} x_{j}\right) & =\left(\sum_{i} b_{i} \beta_{i q}^{p}\right)\left(\sum_{j} b_{j}^{\prime} \beta_{j q}^{p}\right) \\
& =\left(\sum_{i} \sum_{i} b_{i} b_{j}^{\prime} \sum_{i} \beta_{i t}^{p} \beta_{j q}^{t}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sigma\left(\left(\sum_{i} b_{i} x_{i}\right)\left(\sum_{j} b_{j}^{\prime} x_{j}\right)\right) & =\sigma\left(\sum_{i} \sum_{j} b_{i} b_{j}^{\prime} \sum_{t} \beta_{i j}^{t} x_{t}\right) \\
& =\left(\sum_{i} \sum_{j} b_{i} b_{j}^{\prime} \sum_{t} \beta_{i j}^{t} \beta_{t q}^{p}\right)
\end{aligned}
$$

Thus

$$
\sigma\left(\sum_{i} b_{i} x_{i}\right) \sigma\left(\sum_{j} b_{j}^{\prime} x_{j}\right)=\sigma\left(\left(\sum_{i} b_{i} x_{i}\right)\left(\sum_{j} b_{j}^{\prime} x_{j}\right)\right)
$$

by Lemma 1 (ii).

Corollary 7.

is a commutative diagram.
Now we shall make the following assumption:
(C)

$$
\pi\left(\beta_{i j}^{k}\right)=\beta_{i j}^{k} \quad \text { for all } i, j \text { and } k
$$

(C) is equivalent to

$$
\beta_{i j}^{k} v=v \beta_{i j}^{k} \quad \text { for all } v \in V \text { and } i, j \text { and } k .
$$

Lemma 8. Under the assumption (C), the followings are concluded.
(i) Let $\left(b_{p q}\right) \in M_{n}(B)$. Then $\left(b_{p q}\right) \in \operatorname{End}\left({ }_{A} W\right)$ if and only if

$$
\sum_{q} \beta_{s i}^{q} b_{t q}=\sum_{q} \beta_{q i}^{t} b_{q s} \quad \text { for all } i, t \text { and } s .
$$

(ii) $\operatorname{End}\left({ }_{A} W\right)=\sum_{k=1}^{n} B\left(\beta_{k q}^{p}\right)=\sigma(A)$.

Proof. (i) Let $\left[v_{s}\right] \in W$. Then

$$
\begin{aligned}
x_{i}\left(\left[v_{s}\right]\left(b_{p q}\right)\right) & =x_{i}\left[\sum_{t} v_{t} b_{t s}\right]=\left[\sum_{t} \sum_{q} \beta_{s i}^{q} v_{t} b_{t q}\right] \\
& =\left[\sum_{1} \sum_{q} v_{t} \beta_{s i}^{q} b_{t q}\right] \text { for all } i .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(x_{i}\left[v_{s}\right]\right)\left(b_{p q}\right) & =\left[\sum_{t} \beta_{s i}^{t} v_{t}\right]\left(b_{p q}\right)=\left[\sum_{t} \sum_{q} \beta_{q i}^{t} v_{t} b_{q s}\right] \\
& =\left[\sum_{t} \sum_{q} v_{t} \beta_{q i}^{t} b_{q s}\right] \text { for all } i .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
\left(b_{p q}\right) \in \operatorname{End}\left({ }_{A} W\right) \Leftrightarrow \sum_{t} \sum_{q} v_{t} \beta_{s i}^{q} b_{t q}=\sum_{i} \sum_{q} v_{t} \beta_{q i}^{t} b_{q s} \\
\quad \text { for all }\left[v_{s}\right] \in W \text { and } i, s . \tag{6}
\end{align*}
$$

Suppose $\left(b_{p q}\right) \in \operatorname{End}\left({ }_{A} W\right)$. Let $v \in V$ and fix t. Put $\left[v_{s}\right]=\left[\delta_{p s} v\right]$. Then by (6),

$$
v \sum_{q} \beta_{s i}^{q} b_{t q}=v \sum_{q} \beta_{q i}^{t} b_{q s} \quad \text { for all } v \in V .
$$

Therefore

$$
\sum_{q} \beta_{s i}^{q} b_{t q}=\sum_{q} \beta_{q i}^{t} b_{q s}
$$

Conversely, if $\Sigma_{q} \beta_{s i}^{q} b_{t q}=\Sigma_{q} \beta_{q i}^{t} b_{q s}$ for all i and t, then it is easy to see that $\left(b_{p q}\right) \in \operatorname{End}\left({ }_{A} W\right)$ from (6).
(ii) Let $\left(b_{p q}\right) \in \operatorname{End}\left({ }_{A} W\right)$. Then, by (i),

$$
\begin{aligned}
b_{p i} & =\sum_{q} \delta_{q i} b_{p q}=\sum_{q} \sum_{s} \alpha_{s} \beta_{s i}^{q} b_{p q}=\sum_{s} \alpha_{s} \sum_{q} \beta_{s i}^{q} b_{p q} \\
& =\sum_{s} \alpha_{s} \sum_{q} \beta_{q i}^{p} b_{q s}=\sum_{q}\left(\sum_{s} \alpha_{s} b_{q s}\right) \beta_{q i}^{p} \text { for all } p \text { and } i .
\end{aligned}
$$

Put $c_{q}=\Sigma_{s} \alpha_{s} b_{q s}$. Then we have

$$
b_{p q}=\sum_{k} c_{k} \rho_{k q}^{p} \quad \text { for all } p \text { and } q
$$

Thus

$$
\left(b_{p q}\right)=\sum_{k} c_{k}\left(\beta_{k q}^{p}\right) \in \sum_{k} B\left(\beta_{k q}^{p}\right)
$$

On the other hand, it is easy to check that $\sum_{k} B\left(\beta_{k q}^{p}\right) \subseteq \operatorname{End}\left({ }_{A} W\right)$. Thus we have proved (ii).

Now we get the following theorem.
Theorem 9. Under the assumption (C), is has a self-duality induced by W.
Proof. By Corollary $4, A$ has a duality induced by ${ }_{A} W$, and $\operatorname{End}\left({ }_{A} W\right)=\sigma(A) \cong A$ from Lemma 8. Thus ${ }_{A} W$ induces a self-duality of A.

References

[1] K.R. Fuller and J.K. Haack, Duality for semigroup rings, J. Pure Appl. Algebra 22 (1981) 113-119.
[2] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku (Sect. A) 6 (1958) 83-142.
[3] P. Vámos, Rings with duality, Proc. London Math. Soc. (3) 35 (1977) 275-289.

